As a tool, the laser has stretched the imaginations of countless scientists and engineers, making possible everything from stunning images of celestial bodies to high-speed communications. Once described as a “solution looking for a problem,” the laser powered and pulsed its way into nearly every aspect of modern life.
One area in particular, data transmission, gained momentum as the 1980s progressed. NSF’s Lightwave Technology Program in its engineering directorate was critical not only because the research it funded fueled the Internet, mobile devices and other high-bandwidth communications applications, but also because many of the laser advances in this field drove progress in other disciplines.An important example of this crossover is optical coherence tomography (OCT). Used in the late 1980s in telecommunications to find faults in miniature optical waveguides and optical fibers, this imaging technique was adapted by biomedical researchers in the early 1990s to noninvasively image microscopic structures in the eye. The imaging modality is now commonly used in ophthalmology to image the retina. NSF continues to fund OCT research.As laser technology matured through the 1990s, applications became more abundant. Lasers made their way to the factory floor (to cut, weld and drill) and the ocean floor (to boost signals in transatlantic communications). The continued miniaturization of lasers and the advent of optical fibers radically altered medical diagnostics as well as surgery.